If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 7x2 + 16x + -2 = 0 Reorder the terms: -2 + 16x + 7x2 = 0 Solving -2 + 16x + 7x2 = 0 Solving for variable 'x'. Begin completing the square. Divide all terms by 7 the coefficient of the squared term: Divide each side by '7'. -0.2857142857 + 2.285714286x + x2 = 0 Move the constant term to the right: Add '0.2857142857' to each side of the equation. -0.2857142857 + 2.285714286x + 0.2857142857 + x2 = 0 + 0.2857142857 Reorder the terms: -0.2857142857 + 0.2857142857 + 2.285714286x + x2 = 0 + 0.2857142857 Combine like terms: -0.2857142857 + 0.2857142857 = 0.0000000000 0.0000000000 + 2.285714286x + x2 = 0 + 0.2857142857 2.285714286x + x2 = 0 + 0.2857142857 Combine like terms: 0 + 0.2857142857 = 0.2857142857 2.285714286x + x2 = 0.2857142857 The x term is 2.285714286x. Take half its coefficient (1.142857143). Square it (1.306122449) and add it to both sides. Add '1.306122449' to each side of the equation. 2.285714286x + 1.306122449 + x2 = 0.2857142857 + 1.306122449 Reorder the terms: 1.306122449 + 2.285714286x + x2 = 0.2857142857 + 1.306122449 Combine like terms: 0.2857142857 + 1.306122449 = 1.5918367347 1.306122449 + 2.285714286x + x2 = 1.5918367347 Factor a perfect square on the left side: (x + 1.142857143)(x + 1.142857143) = 1.5918367347 Calculate the square root of the right side: 1.261680124 Break this problem into two subproblems by setting (x + 1.142857143) equal to 1.261680124 and -1.261680124.Subproblem 1
x + 1.142857143 = 1.261680124 Simplifying x + 1.142857143 = 1.261680124 Reorder the terms: 1.142857143 + x = 1.261680124 Solving 1.142857143 + x = 1.261680124 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1.142857143' to each side of the equation. 1.142857143 + -1.142857143 + x = 1.261680124 + -1.142857143 Combine like terms: 1.142857143 + -1.142857143 = 0.000000000 0.000000000 + x = 1.261680124 + -1.142857143 x = 1.261680124 + -1.142857143 Combine like terms: 1.261680124 + -1.142857143 = 0.118822981 x = 0.118822981 Simplifying x = 0.118822981Subproblem 2
x + 1.142857143 = -1.261680124 Simplifying x + 1.142857143 = -1.261680124 Reorder the terms: 1.142857143 + x = -1.261680124 Solving 1.142857143 + x = -1.261680124 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1.142857143' to each side of the equation. 1.142857143 + -1.142857143 + x = -1.261680124 + -1.142857143 Combine like terms: 1.142857143 + -1.142857143 = 0.000000000 0.000000000 + x = -1.261680124 + -1.142857143 x = -1.261680124 + -1.142857143 Combine like terms: -1.261680124 + -1.142857143 = -2.404537267 x = -2.404537267 Simplifying x = -2.404537267Solution
The solution to the problem is based on the solutions from the subproblems. x = {0.118822981, -2.404537267}
| 175x4/7 | | 4=33-1 | | a=1/2*8*11 | | 6=27n | | 10(s-8)=-109 | | 2x+6=3x+15 | | 2=35-1 | | 81+289=x | | 2242+5x=10x | | 2x^2+4x=-8 | | (4-w)(2w-5)=0 | | (3-2y)(2-y)= | | 3x=(81)3 | | x(x-1)-56=0 | | 2x-6=3x+15 | | 12x=(6)(x+5) | | 1/7x2/3 | | y=3x^2-11x+10 | | 2x+4=p+12 | | 2x+(3x+4x)= | | 3(t+3)=-6 | | 4(x+0.7)=6x+12.4 | | -6x+3=51 | | 4/3•3.14•125 | | 2x=p+12 | | 40*x/10-x | | (3a-5)(2a-7)= | | 4+0.3r=r-8 | | 6x-7+6x=53 | | -7(5x-3)-8+27x=85 | | 7(4s+3)=133 | | 20x^4=10000 |